If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+15t-54=0
a = 4.9; b = 15; c = -54;
Δ = b2-4ac
Δ = 152-4·4.9·(-54)
Δ = 1283.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{1283.4}}{2*4.9}=\frac{-15-\sqrt{1283.4}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{1283.4}}{2*4.9}=\frac{-15+\sqrt{1283.4}}{9.8} $
| 2n+15=5n+25 | | -7(-10+2x)=-98 | | 3a+5(a-8)=-104 | | 3+6=4x | | x2=x6 | | -13=-4m-9 | | 6x+1/4=x+1 | | 3^2+6x=0 | | Y=3-4x+x2 | | 4x^2+40x-25=0 | | 5=b/2-5 | | 4x^2-40x-25=0 | | x/9=88/99 | | -2=6(-2)+b | | -155=-5(4n-1) | | R+7r=-12+5r | | p/4+7=11 | | 20w-15w^2=0 | | 5x+20x-8=5(5x+3) | | -5n+5=45 | | -18=n+5n | | -6(4x+9)=-198 | | -16n+18=-15n-8 | | 2-7(-2n+6)=-124 | | (x-0.8)-(0.5x-0.5)=-0.3x | | 4(x-1)=2(3x-1)(1-2x) | | 7x+21x-8=7(4x+5) | | 166=-4(6x-1)-3x | | s^2+23s+22=0 | | -6(x-8)=90 | | -49-(-45)=x/9 | | 5n+32=-6(3-5n) |